Suitability of monotypic and mixed diets for Anopheles hermsi larval development

J Vector Ecol. 2016 Jun;41(1):80-9. doi: 10.1111/jvec.12197.

Abstract

The developmental time and survival to eclosion of Anopheles hermsi Barr & Guptavanij fed monotypic and mixed diets of ten food types were examined in laboratory studies. Larvae fed monotypic diets containing animal detritus (freeze-dried rotifers, freeze-dried Daphnia pulicaria, and TetraMin® fish food flakes) and the mixotrophic protistan Cryptomonas ovata developed faster and survived better than larvae that were fed other monotypic diets. Survival to adulthood of larvae fed several concentrations of the diatom Planothidium (=Achnanthes) lanceolatum was poor (<13%) and larval development time was approximately twice that of larvae fed TetraMin® fish food flakes, the standard laboratory diet. Larvae fed monotypic diets containing prokaryotes (bacteria [Bacillus cereus] and cyanobacteria [Oscillatoria prolifera]) and brewer's yeast (Saccharomyces cerevisiae) failed to survive beyond the 1(st) and 2(nd) instar, respectively. Larvae fed only chlorophytes, single-celled Chlamydomonas reinhardtii and filamentous Spirogyra communis, failed to complete larval development, regardless of the concentration tested. Cohorts fed a combination of food types (mixed diets) usually developed better than cohorts fed monotypic diets. Food types that failed to support complete development when fed alone often facilitated development to adulthood when fed in combination with food types containing >1% C20 polyunsaturated fatty acids as total fat, but regardless of essential fatty acid content, algae that produced mucilage and filaments that sank out of the feeding zone were poor quality diets.

Keywords: Anopheles; Arachidonic acid; eicosapentaenoic acid; essential fatty acids; larval diets; nutrition.

MeSH terms

  • Animals
  • Anopheles / growth & development*
  • Diet*
  • Fatty Acids, Unsaturated
  • Larva / growth & development*

Substances

  • Fatty Acids, Unsaturated