Activation of Epidermal Growth Factor Receptor/p38/Hypoxia-inducible Factor-1α Is Pivotal for Angiogenesis and Tumorigenesis of Malignantly Transformed Cells Induced by Hexavalent Chromium

J Biol Chem. 2016 Jul 29;291(31):16271-81. doi: 10.1074/jbc.M116.715797. Epub 2016 May 25.

Abstract

Hexavalent chromium (Cr(VI))-containing compounds are well established environmental carcinogens. Most mechanistic investigations of Cr(VI)-induced carcinogenesis focus on oxidative stress and various cellular responses, leading to malignant cell transformation or the first stage of metal-induced carcinogenesis. The development of malignantly transformed cells into tumors that require angiogenesis is the second stage. This study focuses on the second stage, in particular, the role of EGF receptor (EGFR) signaling in angiogenesis and tumorigenesis of Cr(VI)-transformed cells. Our preliminary studies have shown that EGFR is constitutively activated in Cr(VI)-transformed cells, in lung tissue from Cr(VI)-exposed animals, and in lung tumor tissue from a non-smoking worker occupationally exposed to Cr(VI) for 19 years. Using in vitro and in vivo models, the present study has investigated the role of EGFR in angiogenesis of Cr(VI)-transformed cells. The results show that Cr(VI)-transformed cells are angiogenic. Hypoxia-inducible factor-1α, pro-angiogenic protein matrix metalloproteinase 1, and VEGF are all highly expressed in Cr(VI)-transformed cells, in lung tissue from animals exposed to Cr(VI), and in lung tumor tissue from a non-smoking worker occupationally exposed to Cr(VI) for 19 years. p38 MAPK is also activated in Cr(VI)-transformed cells and in human lung tumor tissue. Inhibition of EGFR reduces p38 MAPK, resulting in decreased expression of hypoxia-inducible factor-1α, metalloproteinase 1, and VEGF, leading to suppressions of angiogenesis and tumorigenesis. Overall, the present study has demonstrated that EGFR plays an important role in angiogenesis and tumorigenesis of Cr(VI)-transformed cells.

Keywords: Cr(VI); angiogenesis; epidermal growth factor receptor (EGFR); hypoxia-inducible factor (HIF); matrix metalloproteinase (MMP); p38.

Publication types

  • Retracted Publication

MeSH terms

  • Animals
  • Cell Transformation, Neoplastic* / chemically induced
  • Cell Transformation, Neoplastic* / genetics
  • Cell Transformation, Neoplastic* / metabolism
  • Cell Transformation, Neoplastic* / pathology
  • Chromium / toxicity*
  • ErbB Receptors / genetics
  • ErbB Receptors / metabolism*
  • Female
  • Human Umbilical Vein Endothelial Cells
  • Humans
  • Hypoxia-Inducible Factor 1, alpha Subunit / genetics
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism*
  • Lung Neoplasms* / chemically induced
  • Lung Neoplasms* / genetics
  • Lung Neoplasms* / metabolism
  • Lung Neoplasms* / pathology
  • Mice
  • Mice, Inbred BALB C
  • Neovascularization, Pathologic* / chemically induced
  • Neovascularization, Pathologic* / genetics
  • Neovascularization, Pathologic* / metabolism
  • Neovascularization, Pathologic* / pathology
  • Occupational Exposure / adverse effects*
  • p38 Mitogen-Activated Protein Kinases / metabolism*

Substances

  • HIF1A protein, human
  • Hif1a protein, mouse
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Chromium
  • chromium hexavalent ion
  • EGFR protein, human
  • EGFR protein, mouse
  • ErbB Receptors
  • p38 Mitogen-Activated Protein Kinases