Self-Assembled Heteroepitaxial Oxide Nanocomposite for Photoelectrochemical Solar Water Oxidation

Chem Mater. 2016 May 10;28(9):3017-3023. doi: 10.1021/acs.chemmater.6b00122. Epub 2016 Apr 13.

Abstract

We report on spontaneously phase ordered heteroepitaxial SrTiO3 (STO):ZnFe2O4 (ZFO) nanocomposite films that give rise to strongly enhanced photoelectrochemical solar water oxidation, consistent with enhanced photoinduced charge separation. The STO:ZFO nanocomposite yielded an enhanced photocurrent density of 0.188 mA/cm2 at 1.23 V vs a reversible hydrogen electrode, which was 7.9- and 2.6-fold higher than that of the plain STO film and ZFO film cases under 1-sun illumination, respectively. The photoelectrode also produced stable photocurrent and Faradaic efficiencies of H2 and O2 formation that were more than 90%. Incident-photon-to-current-conversion efficiency measurements, Tauc plots, Mott-Schottky plots, and electrochemical impedance spectroscopy measurements proved that the strongly enhanced photogenerated charge separation resulted from vertically aligned pseudosingle crystalline components, epitaxial heterojunctions, and a staggered band alignment of the components of the nanocomposite films. This study presents a completely new avenue for efficient solar energy conversion applications.