Potential of fly ash for neutralisation of acid mine drainage

Environ Sci Pollut Res Int. 2016 Sep;23(17):17083-94. doi: 10.1007/s11356-016-6862-3. Epub 2016 May 21.

Abstract

Lignite (PK), bituminous (FI) and biomass (SE) fly ashes (FAs) were mineralogically and geochemically characterised, and their element leachability was studied with batch leaching tests. The potential for acid neutralisation (ANP) was quantified by their buffering capacity, reflecting their potential for neutralisation of acid mine drainage. Quartz was the common mineral in FAs detected by XRD with iron oxide, anhydrite, and magnesioferrite in PK, mullite and lime in FI, and calcite and anorthite in SE. All the FAs had high contents of major elements such as Fe, Si, Al and Ca. The Ca content in SE was six and eight times higher compared to PK and FI, respectively. Sulphur content in PK and SE was one magnitude higher than FI. Iron concentrations were higher in PK. The trace element concentrations varied between the FAs. SE had the highest ANP (corresponding to 275 kg CaCO3 tonne(-1)) which was 15 and 10 times higher than PK and FI, respectively. The concentrations of Ca(2+), SO4 (2-), Na(+) and Cl(-) in the leachates were much higher compared to other elements from all FA samples. Iron, Cu and Hg were not detected in any of the FA leachates because of their mild to strong alkaline nature with pH ranging from 9 to 13. Potassium leached in much higher quantity from SE than from the other ashes. Arsenic, Mn and Ni leached from PK only, while Co and Pb from SE only. The concentrations of Zn were higher in the leachates from SE. The FAs used in this study have strong potential for the neutralisation of AMD due to their alkaline nature. However, on the other hand, FAs must be further investigated, with scaled-up experiments before full-scale application, because they might leach pronounced concentrations of elements of concern with decreasing pH while neutralising AMD.

Keywords: Acid mine drainage (AMD); Acid neutralization potential; Coal fly ash; Coal mine; Mineralogical composition; Waste remediation.

MeSH terms

  • Acids
  • Coal
  • Coal Ash / chemistry*
  • Environmental Restoration and Remediation*
  • Mining*
  • Water Pollutants, Chemical / analysis*
  • Water Pollutants, Chemical / chemistry*

Substances

  • Acids
  • Coal
  • Coal Ash
  • Water Pollutants, Chemical