Aziridinyl Fluorophores Demonstrate Bright Fluorescence and Superior Photostability by Effectively Inhibiting Twisted Intramolecular Charge Transfer

J Am Chem Soc. 2016 Jun 8;138(22):6960-3. doi: 10.1021/jacs.6b03924. Epub 2016 May 31.

Abstract

Replacing conventional dialkylamino substituents with a three-membered aziridine ring in naphthalimide leads to significantly enhanced brightness and photostability by effectively suppressing twisted intramolecular charge transfer formation. This replacement is generalizable in other chemical families of fluorophores, such as coumarin, phthalimide, and nitrobenzoxadiazole dyes. In highly polar fluorophores, we show that aziridinyl dyes even outperform their azetidinyl analogues in aqueous solution. We also proposed one simple mechanism that can explain the vulnerability of quantum yield to hydrogen bond interactions in protonic solvents in various fluorophore families. Such knowledge is a critical step toward developing high-performance fluorophores for advanced fluorescence imaging.

Publication types

  • Research Support, Non-U.S. Gov't