Chemically Modulated Carbon Nitride Nanosheets for Highly Selective Electrochemiluminescent Detection of Multiple Metal-ions

Anal Chem. 2016 Jun 7;88(11):6004-10. doi: 10.1021/acs.analchem.6b01062. Epub 2016 May 24.

Abstract

Chemical structures of two-dimensional (2D) nanosheet can effectively control the properties thus guiding their applications. Herein, we demonstrate that carbon nitride nanosheets (CNNS) with tunable chemical structures can be obtained by exfoliating facile accessible bulk carbon nitride (CN) of different polymerization degree. Interestingly, the electrochemiluminescence (ECL) properties of as-prepared CNNS were significantly modulated. As a result, unusual changes for different CNNS in quenching of ECL because of inner filter effect/electron transfer and enhancement of ECL owing to catalytic effect were observed by adding different metal ions. On the basis of this, by using various CNNS, highly selective ECL sensors for rapid detecting multiple metal-ions such as Cu(2+), Ni(2+), and Cd(2+) were successfully developed without any labeling and masking reagents. Multiple competitive mechanisms were further revealed to account for such enhanced selectivity in the proposed ECL sensors. The strategy of preparing CNNS with tunable chemical structures that facilely modulated the optical properties would open a vista to explore 2D carbon-rich materials for developing a wide range of applications such as sensors with enhanced performances.

Publication types

  • Research Support, Non-U.S. Gov't