GSTP1 Is a Driver of Triple-Negative Breast Cancer Cell Metabolism and Pathogenicity

Cell Chem Biol. 2016 May 19;23(5):567-578. doi: 10.1016/j.chembiol.2016.03.017. Epub 2016 May 12.

Abstract

Breast cancers possess fundamentally altered metabolism that fuels their pathogenicity. While many metabolic drivers of breast cancers have been identified, the metabolic pathways that mediate breast cancer malignancy and poor prognosis are less well understood. Here, we used a reactivity-based chemoproteomic platform to profile metabolic enzymes that are enriched in breast cancer cell types linked to poor prognosis, including triple-negative breast cancer (TNBC) cells and breast cancer cells that have undergone an epithelial-mesenchymal transition-like state of heightened malignancy. We identified glutathione S-transferase Pi 1 (GSTP1) as a novel TNBC target that controls cancer pathogenicity by regulating glycolytic and lipid metabolism, energetics, and oncogenic signaling pathways through a protein interaction that activates glyceraldehyde-3-phosphate dehydrogenase activity. We show that genetic or pharmacological inactivation of GSTP1 impairs cell survival and tumorigenesis in TNBC cells. We put forth GSTP1 inhibitors as a novel therapeutic strategy for combatting TNBCs through impairing key cancer metabolism and signaling pathways.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology
  • Dose-Response Relationship, Drug
  • Enzyme Inhibitors / chemistry
  • Enzyme Inhibitors / pharmacology
  • Glutathione S-Transferase pi / antagonists & inhibitors
  • Glutathione S-Transferase pi / genetics
  • Glutathione S-Transferase pi / metabolism*
  • Humans
  • Leucine / analogs & derivatives*
  • Leucine / chemistry
  • Leucine / pharmacology
  • Mice
  • Molecular Structure
  • Neoplasms, Experimental / drug therapy
  • Neoplasms, Experimental / metabolism
  • Neoplasms, Experimental / pathology
  • Structure-Activity Relationship
  • Triazines / chemistry
  • Triazines / pharmacology*
  • Triple Negative Breast Neoplasms / drug therapy
  • Triple Negative Breast Neoplasms / metabolism*
  • Triple Negative Breast Neoplasms / pathology*
  • Tumor Cells, Cultured

Substances

  • Antineoplastic Agents
  • Enzyme Inhibitors
  • LAS17 compound
  • Triazines
  • GSTP1 protein, human
  • Glutathione S-Transferase pi
  • Leucine