Electronically and rapidly tunable fiber-integrable optical parametric oscillator for nonlinear microscopy

Opt Lett. 2016 May 15;41(10):2193-6. doi: 10.1364/OL.41.002193.

Abstract

We present a fiber-based optical parametric oscillator (FOPO) pumped by a fiber-coupled laser diode. The FOPO consisted of a photonic crystal fiber to convert the pump pulses via four-wave mixing and a dispersive resonator formed by a single-mode fiber. Via dispersion filtering, output pulses with a bandwidth of about 3 nm, a temporal duration of about 8 ps and a pulse energy of up to 22 nJ could be generated. By changing the repetition frequency of the pump laser diode by about ±1 kHz, the wavelength of the output pulses could be tuned between 1130 and 1310 nm within 8 μs, without the need to change the length of the resonator. Therewith, the FOPO should especially be suited for hyperspectral imaging, while its all-electronic control constitutes a promising approach to a turnkey and alignment-free light source.