Cyanidin inhibits quorum signalling pathway of a food borne opportunistic pathogen

J Food Sci Technol. 2016 Feb;53(2):968-76. doi: 10.1007/s13197-015-2031-9. Epub 2016 Jan 25.

Abstract

Quorum sensing (QS) is the process of population dependent cell to cell communication used by bacteria to regulate their phenotypic characteristics. Key virulence factors that determine the bacterial pathogenicity and food spoilage were found to be regulated by QS mechanism. Hence, disrupting the QS signaling pathway could be an attractive strategy to manage food borne pathogens. In the current study, QS inhibitory activity of a naturally occurring anthocyanin-cyanidin and its anti-biofilm property were assessed against an opportunistic pathogen Klebsiella pneumoniae, using a bio-sensor strain. Further, QS inhibitory property of a naturally occurring anthocyanin cyanidin was further confirmed using in-silico techniques like molecular docking and molecular dynamics simulation studies. Cyanidin at sub-lethal dose significantly inhibited QS-dependent phenotypes like violacein production (73.96 %), biofilm formation (72.43 %), and exopolysaccharide production (68.65) in a concentration-dependent manner. Cyanidin enhanced the sensitivity of test pathogen to conventional antibiotics in a synergistic manner. Molecular docking analysis revealed that cyanidin binds more rigidly with LasR receptor protein than the signaling compound with a docking score of -9.13 Kcal/mol. Molecular dynamics simulation predicted that QS inhibitory activity occurs through the conformational changes between the receptor and cyanidin complex. Our results indicate that cyanidin, can be a potential QS based antibiofilm and antibacterial agent for food borne pathogens.

Keywords: Anthocyanin; Dynamics Simulation; K. pneumoniae; Molecular docking; Quorum sensing.