Advances in Attenuation Correction Techniques in PET

PET Clin. 2007 Apr;2(2):191-217. doi: 10.1016/j.cpet.2007.12.002. Epub 2008 Feb 15.

Abstract

Molecular imaging using PET has evolved from a vigorous academic field into the clinical arena. Considerable advances have been made in the design of high-resolution standalone PET and combined PET/CT units dedicated to clinical whole-body scanning. Likewise, much worthwhile research focused on the development of quantitative imaging protocols incorporating accurate data correction techniques and sophisticated image reconstruction algorithms. Since its inception, photon attenuation in biological tissues has been identified as the most important physical degrading factor affecting PET image quality and quantitative accuracy. Various strategies have been devised to determine an accurate attenuation map to enable correction for nonlinear photon attenuation in whole-body PET studies. This article presents the physical and methodological basis of photon attenuation and summarizes state-of-the-art developments in algorithms used to derive the attenuation map aiming at accurate attenuation compensation of PET data. Future prospects, research trends, and challenges are identified, and directions for future research are discussed.

Publication types

  • Review