Amino acid substitutions [K16A] and [K28A] distinctly affect amyloid β-protein oligomerization

J Biol Phys. 2016 Jun;42(3):453-76. doi: 10.1007/s10867-016-9417-4. Epub 2016 May 7.

Abstract

Amyloid β-protein (A β) assembles into oligomers that play a seminal role in Alzheimer's disease (AD), a leading cause of dementia among the elderly. Despite undisputed importance of A β oligomers, their structure and the basis of their toxicity remain elusive. Previous experimental studies revealed that the [K16A] substitution strongly inhibits toxicity of the two predominant A β alloforms in the brain, A β 40 and A β 42, whereas the [K28A] substitution exerts only a moderate effect. Here, folding and oligomerization of [A16]A β 40, [A28]A β 40, [A16]A β 42, and [A28]A β 42 are examined by discrete molecular dynamics (DMD) combined with a four-bead implicit solvent force field, DMD4B-HYDRA, and compared to A β 40 and A β 42 oligomer formation. Our results show that both substitutions promote A β 40 and A β 42 oligomerization and that structural changes to oligomers are substitution- and alloform-specific. The [K28A] substitution increases solvent-accessible surface area of hydrophobic residues and the intrapeptide N-to-C terminal distance within oligomers more than the [K16A] substitution. The [K16A] substitution decreases the overall β-strand content, whereas the [K28A] substitution exerts only a modest change. Substitution-specific tertiary and quaternary structure changes indicate that the [K16A] substitution induces formation of more compact oligomers than the [K28A] substitution. If the structure-function paradigm applies to A β oligomers, then the observed substitution-specific structural changes in A β 40 and A β 42 oligomers are critical for understanding the structural basis of A β oligomer toxicity and correct identification of therapeutic targets against AD.

Keywords: Alzheimer’s disease; Amyloid β-protein; Oligomer structure; Oligomerization; Protein folding and assembly; Structure-toxicity relationship.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Substitution*
  • Amyloid beta-Peptides / chemistry*
  • Amyloid beta-Peptides / genetics*
  • Humans
  • Molecular Dynamics Simulation
  • Peptide Fragments / chemistry*
  • Peptide Fragments / genetics*
  • Protein Folding
  • Protein Multimerization / genetics*
  • Protein Structure, Quaternary
  • Thermodynamics

Substances

  • Amyloid beta-Peptides
  • Peptide Fragments
  • amyloid beta-protein (1-40)
  • amyloid beta-protein (1-42)