Programming of donor T cells using allogeneic δ-like ligand 4-positive dendritic cells to reduce GVHD in mice

Blood. 2016 Jun 23;127(25):3270-80. doi: 10.1182/blood-2015-05-644476. Epub 2016 May 3.

Abstract

Alloreactive T cells play a critical role in eliminating hematopoietic malignant cells but are also the mediators of graft-versus-host disease (GVHD), a major complication that subverts the success of allogeneic hematopoietic stem cell transplantation (HSCT). However, induction of alloreactive T cells does not necessarily lead to GVHD. Here we report the development of a cellular programming approach to render alloreactive T cells incapable of causing severe GVHD in both major histocompatibility complex (MHC)-mismatched and MHC-identical but minor histocompatibility antigen-mismatched mouse models. We established a novel platform that produced δ-like ligand 4-positive dendritic cells (Dll4(hi)DCs) from murine bone marrow using Flt3 ligand and Toll-like receptor agonists. Upon allogeneic Dll4(hi)DC stimulation, CD4(+) naïve T cells underwent effector differentiation and produced high levels of interferon γ (IFN-γ) and interleukin-17 in vitro, depending on Dll4 activation of Notch signaling. Following transfer, allogeneic Dll4(hi)DC-induced T cells were unable to mediate severe GVHD but preserved antileukemic activity, significantly improving the survival of leukemic mice undergoing allogeneic HSCT. This effect of Dll4(hi)DC-induced T cells was associated with their impaired expansion in GVHD target tissues. IFN-γ was important for Dll4(hi)DC programming to reduce GVHD toxicities of alloreactive T cells. Absence of T-cell IFN-γ led to improved survival and expansion of Dll4(hi)DC-induced CD4(+) T cells in transplant recipients and caused lethal GVHD. Our findings demonstrate that Dll4(hi)DC programming can overcome GVHD toxicity of donor T cells and produce leukemia-reactive T cells for effective immunotherapy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cellular Reprogramming Techniques / methods*
  • Cellular Reprogramming*
  • Dendritic Cells / metabolism*
  • Dendritic Cells / physiology
  • Graft vs Host Disease / immunology
  • Graft vs Host Disease / prevention & control*
  • Hematopoietic Stem Cell Transplantation / adverse effects
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Leukemia / immunology
  • Leukemia / therapy
  • Membrane Proteins / metabolism*
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • T-Lymphocytes / immunology*
  • Tissue Donors
  • Transplantation, Homologous

Substances

  • Intracellular Signaling Peptides and Proteins
  • Membrane Proteins
  • delta protein