Theoretical and experimental analysis of high-power frequency-stabilized semiconductor master oscillator power-amplifier system

Appl Opt. 2016 Apr 10;55(11):2909-14. doi: 10.1364/AO.55.002909.

Abstract

We present a compact high-power 780 nm frequency-stabilized diode laser with a power of as high as 2.825 W, corresponding to an estimated overall efficiency of 38.5%. The tapered amplifier (TPA) gain was about 24.5 dB, which was basically consistent with the simulation results. The beam quality factor was M2<1.72. The core feature of the system was stabilizing the frequency of the narrowband semiconductor TPA system with the matured saturated absorption spectrum technique. The laser frequency was stabilized against mode hops for a period of >4200 s with a frequency fluctuation around 6.7×10-10 within 1 s of the observation period, and the linewidth was no more than 0.95 MHz. The laser performance indicates that the current frequency-stabilized semiconductor laser has great potential in certain conditions that require several watts of output power.