Modeling and experimental investigation of an integrated optical microheater in silicon-on-insulator

Appl Opt. 2016 Apr 10;55(11):2837-42. doi: 10.1364/AO.55.002837.

Abstract

A linear piecewise model has been formulated to analyze the performance of a metallic microheater integrated with single-mode waveguides (λ∼1550 nm) in silicon-on-insulator (SOI). The model has been used to evaluate integrated optical microheaters fabricated in a SOI substrate with 2 µm device layer thickness. The Fabry-Perot modulation technique has been used to extract the effective thermo-optic phase shift and response time. The effective thermal power budget of Peff,π∼500 µW (out of actually consumed power Pπ=1.1 mW) for a π phase shift and a switching time of τ∼9 µs, have been recorded for a typical Ti heater stripe of length LH=50 µm, width WH=2 µm, and thickness tH∼150 nm, integrated with a Fabry-Perot waveguide cavity of length ∼20 mm. It has been shown that the performance of a heater improves (in terms of power budget) as the length of a microheater decreases. However, smaller heater size requires higher joule heating to obtain a desired phase shift, which is again found to be dependent on polarization of the guided mode because of thermal stress.