Effects of particle size on bidirectional reflectance factor measurements from particulate surfaces

Opt Express. 2016 Mar 21;24(6):A612-34. doi: 10.1364/OE.24.00A612.

Abstract

The bidirectional reflectance factor (BRF) is commonly used to study the structure of a particulate surface based on photometric measurements. In this paper, we describe the bidirectional reflectance factor distribution of natural particulate surfaces with particles sizes varying from 0.15 mm to 0.9 mm. Two types of natural particulate surfaces (one with low reflectance and the other with moderate reflectance) were measured at visible and near-infrared wavelengths using the Northeast Normal University Laboratory Goniospectrometer System (NENULGS). Both the BRFs and anisotropic reflectance factors (ARFs) at selected wavelengths were compared with previously published results to verify the accuracy of our measurements, and we also quantitatively analyzed the effects of particle size on the BRF. It was found that the maximum reflectance difference, which was more distinct for the low-reflectance samples, between particulate surfaces with particle sizes of 0.15 mm and 0.9 mm occurred in the forward scattering direction for all samples, and the value of this maximum difference reached 59% for the low-reflectance samples. Then, we conducted a test of a photometric model to determine which parameters could be confidently linked to the surfaces' reflectance behavior. The inverted parameters were compared with the known physical parameters of our samples, such as the particle size. We found that the single-scattering albedo could be empirically used to determine the particle sizes of our samples when measurements of particulate surfaces with different particle sizes were performed under the same incidence conditions and with wide viewing angles. The potential applications of our results appear very promising for empirically resolving the spatial distribution of particle size within a given particulate sample as well as for deepening our understanding of the scattering properties of particulate media.