Genomes of parasitic nematodes (Meloidogyne hapla, Meloidogyne incognita, Ascaris suum and Brugia malayi) have a reduced complement of small RNA interference pathway genes: knockdown can reduce host infectivity of M. incognita

Funct Integr Genomics. 2016 Jul;16(4):441-57. doi: 10.1007/s10142-016-0495-y. Epub 2016 Apr 28.

Abstract

The discovery of RNA interference (RNAi) as an endogenous mechanism of gene regulation in a range of eukaryotes has resulted in its extensive use as a tool for functional genomic studies. It is important to study the mechanisms which underlie this phenomenon in different organisms, and in particular to understand details of the effectors that modulate its effectiveness. The aim of this study was to identify and compare genomic sequences encoding genes involved in the RNAi pathway of four parasitic nematodes: the plant parasites Meloidogyne hapla and Meloidogyne incognita and the animal parasites Ascaris suum and Brugia malayi because full genomic sequences were available-in relation to those of the model nematode Caenorhabditis elegans. The data generated was then used to identify some potential targets for control of the root knot nematode, M. incognita. Of the 84 RNAi pathway genes of C. elegans used as model in this study, there was a 42-53 % reduction in the number of effectors in the parasitic nematodes indicating substantial differences in the pathway between species. A gene each from six functional groups of the RNAi pathway of M. incognita was downregulated using in vitro RNAi, and depending on the gene (drh-3, tsn-1, rrf-1, xrn-2, mut-2 and alg-1), subsequent plant infection was reduced by up to 44 % and knockdown of some genes (i.e. drh-3, mut-2) also resulted in abnormal nematode development. The information generated here will contribute to defining targets for more robust nematode control using the RNAi technology.

Keywords: C. elegans; Comparative genomics; Meloidogyne incognita; Parasitic nematodes; RNAi; miRNA pathway.

MeSH terms

  • Animals
  • Ascaris suum / genetics
  • Ascaris suum / pathogenicity
  • Brugia malayi / genetics
  • Brugia malayi / pathogenicity
  • Caenorhabditis elegans / genetics
  • Disease Resistance / genetics
  • Gene Knockdown Techniques
  • Genome
  • Metabolic Networks and Pathways / genetics*
  • Plant Diseases / genetics
  • Plant Diseases / parasitology
  • RNA / biosynthesis
  • RNA / genetics*
  • RNA Interference*
  • Tylenchoidea / genetics*
  • Tylenchoidea / pathogenicity

Substances

  • RNA