Synthesis and characterization of conductive, biodegradable, elastomeric polyurethanes for biomedical applications

J Biomed Mater Res A. 2016 Sep;104(9):2305-14. doi: 10.1002/jbm.a.35765. Epub 2016 May 17.

Abstract

Biodegradable conductive polymers are currently of significant interest in tissue repair and regeneration, drug delivery, and bioelectronics. However, biodegradable materials exhibiting both conductive and elastic properties have rarely been reported to date. To that end, an electrically conductive polyurethane (CPU) was synthesized from polycaprolactone diol, hexadiisocyanate, and aniline trimer and subsequently doped with (1S)-(+)-10-camphorsulfonic acid (CSA). All CPU films showed good elasticity within a 30% strain range. The electrical conductivity of the CPU films, as enhanced with increasing amounts of CSA, ranged from 2.7 ± 0.9 × 10(-10) to 4.4 ± 0.6 × 10(-7) S/cm in a dry state and 4.2 ± 0.5 × 10(-8) to 7.3 ± 1.5 × 10(-5) S/cm in a wet state. The redox peaks of a CPU1.5 film (molar ratio CSA:aniline trimer = 1.5:1) in the cyclic voltammogram confirmed the desired good electroactivity. The doped CPU film exhibited good electrical stability (87% of initial conductivity after 150 hours charge) as measured in a cell culture medium. The degradation rates of CPU films increased with increasing CSA content in both phosphate-buffered solution (PBS) and lipase/PBS solutions. After 7 days of enzymatic degradation, the conductivity of all CSA-doped CPU films had decreased to that of the undoped CPU film. Mouse 3T3 fibroblasts proliferated and spread on all CPU films. This developed biodegradable CPU with good elasticity, electrical stability, and biocompatibility may find potential applications in tissue engineering, smart drug release, and electronics. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2305-2314, 2016.

Keywords: biodegradable; conductivity; elasticity; electrical stability; polyurethane.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • 3T3 Cells
  • Animals
  • Biodegradable Plastics* / chemical synthesis
  • Biodegradable Plastics* / chemistry
  • Biodegradable Plastics* / pharmacology
  • Elastomers* / chemical synthesis
  • Elastomers* / chemistry
  • Elastomers* / pharmacology
  • Fibroblasts / cytology
  • Fibroblasts / metabolism*
  • Materials Testing*
  • Mice
  • Polyurethanes* / chemical synthesis
  • Polyurethanes* / chemistry
  • Polyurethanes* / pharmacology

Substances

  • Biodegradable Plastics
  • Elastomers
  • Polyurethanes