Effects of high-frequency chest wall oscillation on respiratory control in humans

Am Rev Respir Dis. 1989 May;139(5):1223-30. doi: 10.1164/ajrccm/139.5.1223.

Abstract

We studied the spontaneous breathing patterns of 10 normal adult volunteers during high-frequency chest wall oscillation (HFCWO), accomplished by inflating and deflating a vest worn around each subject's thorax at 2.5 Hz. Tidal volumes generated by HFCWO averaged 100 ml. Mean vest pressure was maintained at approximately 35 cm H2O throughout each experiment, even when HFCWO was not applied. During HFCWO, subjects were instructed occasionally to exhale deeply to obtain end-tidal samples representative of PACO2. HFCWO increased the breath-to-breath variability of spontaneous respiration in all subjects, prolonging expiratory pauses and producing short apneas in some cases. PACO2 decreased significantly (p less than 0.05). The effects on minute ventilation, tidal volume, and inspiratory and expiratory durations remained variable across subjects, even when differences in PACO2 between control and HFCWO states were reduced through inhalation of a low CO2 mixture. None of the changes were statistically significant, although average expiratory duration increased by 29%. Ventilatory responses to CO2 with and without HFCWO were also measured. Normocapnic (PACO2 = 40 mm Hg) ventilatory drive increased significantly (p less than 0.05) in six subjects (Type 1 response) and decreased substantially in the others (Type 2 response); with hypercapnia, the changes in drive were attenuated in both groups. Consequently, CO2 sensitivity decreased in Type 1 subjects and increased in Type 2 subjects. A simple analysis based on this result shows that with HFCWO, Type 2 subjects breathing air will tend to have a lower spontaneous minute ventilation and become hypercapnic. Type 1 subjects will become hypocapnic, but minute ventilation may be higher or lower than control.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Expiratory Reserve Volume
  • Female
  • High-Frequency Ventilation* / instrumentation
  • High-Frequency Ventilation* / methods
  • Humans
  • Hypercapnia / physiopathology
  • Inspiratory Reserve Volume
  • Male
  • Reference Values
  • Respiration*
  • Tidal Volume