Critical role of oncogenic KRAS in pancreatic cancer (Review)

Mol Med Rep. 2016 Jun;13(6):4943-9. doi: 10.3892/mmr.2016.5196. Epub 2016 Apr 27.

Abstract

Pancreatic cancer is a human malignancy with one of the highest mortality rates and little progress has been achieved in its treatment in recent decades. Further improvement to the understanding of the biological and molecular mechanisms underlying the initiation and development of pancreatic ductal adenocarcinoma (PDAC) is required. Previous studies using genetically engineered mouse models have demonstrated that oncogenic GTPase KRas (KRAS) mutation is involved in the formation of pancreatic intraepithelial neoplasia and promotes the progression of PDAC. However, attempts to target KRAS directly by pharmacological inhibition have been unsuccessful. This has resulted in increased efforts to identify pharmacological targets and nodes associated with the mutated KRAS. The present review discusses the recent progress and prospects of KRAS signaling in pancreatic cancer.

Publication types

  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology
  • Antineoplastic Agents / therapeutic use
  • Carcinoma, Pancreatic Ductal / genetics
  • Carcinoma, Pancreatic Ductal / metabolism
  • Carcinoma, Pancreatic Ductal / pathology
  • Cell Transformation, Neoplastic / genetics*
  • Cell Transformation, Neoplastic / metabolism*
  • Disease Models, Animal
  • Energy Metabolism
  • Humans
  • Mice
  • Molecular Targeted Therapy
  • Mutation
  • Pancreatic Neoplasms / drug therapy
  • Pancreatic Neoplasms / genetics*
  • Pancreatic Neoplasms / metabolism*
  • Pancreatic Neoplasms / pathology
  • Proto-Oncogene Proteins p21(ras) / antagonists & inhibitors
  • Proto-Oncogene Proteins p21(ras) / genetics*
  • Proto-Oncogene Proteins p21(ras) / metabolism*
  • Signal Transduction / drug effects
  • Tumor Microenvironment

Substances

  • Antineoplastic Agents
  • Proto-Oncogene Proteins p21(ras)