PD-L1 and Tumor Infiltrating Lymphocytes as Prognostic Markers in Resected NSCLC

PLoS One. 2016 Apr 22;11(4):e0153954. doi: 10.1371/journal.pone.0153954. eCollection 2016.

Abstract

Introduction: Immune checkpoint inhibition has shifted treatment paradigms in non-small cell lung cancer (NSCLC). Conflicting results have been reported regarding the immune infiltrate and programmed death-ligand 1 (PD-L1) as a prognostic marker. We correlated the immune infiltrate and PD-L1 expression with clinicopathologic characteristics in a cohort of resected NSCLC.

Methods: A tissue microarray was constructed using triplicate cores from consecutive resected NSCLC. Immunohistochemistry was performed for CD8, FOXP3 and PD-L1. Strong PD-L1 expression was predefined as greater than 50% tumor cell positivity. Matched nodal samples were assessed for concordance of PD-L1 expression.

Results: Of 522 patients, 346 were node-negative (N0), 72 N1 and 109 N2; 265 were adenocarcinomas (AC), 182 squamous cell cancers (SCC) and 75 other. Strong PD-L1 expression was found in 24% cases. In the overall cohort, PD-L1 expression was not associated with survival. In patients with N2 disease, strong PD-L1 expression was associated with significantly improved disease-free (DFS) and overall survival (OS) in multivariate analysis (HR 0.49, 95%CI 0.36-0.94, p = 0.031; HR 0.46, 95%CI 0.26-0.80, p = 0.006). In this resected cohort only 5% harboured EGFR mutations, whereas 19% harboured KRAS and 23% other. KRAS mutated tumors were more likely to highly express PD-L1 compared to EGFR (22% vs 3%). A stromal CD8 infiltrate was associated with significantly improved DFS in SCC (HR 0.70, 95%CI 0.50-0.97, p = 0.034), but not AC, whereas FOXP3 was not prognostic. Matched nodal specimens (N = 53) were highly concordant for PD-L1 expression (89%).

Conclusion: PD-L1 expression was not prognostic in the overall cohort. PD-L1 expression in primary tumor and matched nodal specimens were highly concordant. The observed survival benefit in N2 disease requires confirmation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • B7-H1 Antigen / metabolism*
  • Biomarkers, Tumor / metabolism*
  • Carcinoma, Non-Small-Cell Lung / metabolism
  • Carcinoma, Non-Small-Cell Lung / pathology*
  • Female
  • Humans
  • Lung Neoplasms / metabolism
  • Lung Neoplasms / pathology*
  • Lymphocytes, Tumor-Infiltrating*
  • Male
  • Middle Aged
  • Prognosis

Substances

  • B7-H1 Antigen
  • Biomarkers, Tumor
  • CD274 protein, human