Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave

Anal Chem. 2016 May 17;88(10):5316-23. doi: 10.1021/acs.analchem.6b00605. Epub 2016 Apr 27.

Abstract

Components in biomedical analysis tools that have direct contact with biological samples, especially biohazardous materials, are ideally discarded after use to prevent cross-contamination. However, a conventional acoustofluidic device is typically a monolithic integration that permanently bonds acoustic transducers with microfluidic channels, increasing processing costs in single-use platforms. In this study, we demonstrate a detachable acoustofluidic system comprised of a disposable channel device and a reusable acoustic transducer for noncontact continuous particle separation via a traveling surface acoustic wave (TSAW). The channel device can be placed onto the SAW transducer with a high alignment tolerance to simplify operation, is made entirely of polydimethylsiloxane (PDMS), and does not require any additional coupling agent. A microstructured pillar is used to couple acoustic waves into the fluid channel for noncontact particle manipulation. We demonstrate the separation of 10 and 15 μm particles at high separation efficiency above 98% in a 49.5 MHz TSAW using the developed detachable acoustofluidic system. Its disposability and ease of assembly should enable broad use of noncontact, disposable particle manipulation techniques in practical biomedical applications related to sample preparation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Dimethylpolysiloxanes / chemistry
  • Hazardous Substances / analysis*
  • Microfluidics / instrumentation
  • Microfluidics / methods*
  • Sound
  • Transducers

Substances

  • Dimethylpolysiloxanes
  • Hazardous Substances
  • baysilon