Myocardial Tissue Doppler Velocity in Child Growth

J Cardiovasc Ultrasound. 2016 Mar;24(1):40-7. doi: 10.4250/jcu.2016.24.1.40. Epub 2016 Mar 24.

Abstract

Background: In adults, tissue Doppler imaging (TDI) is a recommended component of routine echocardiography. However, TDI velocities are less accepted in pediatrics, due to their strong variability and age dependence in children. This study examines the distribution of myocardial tissue Doppler velocities in healthy children to assess the effect of age with cardiac growth on the various echocardiographic measurements.

Methods: Total 144 healthy children were enrolled in this study. They were recruited from the pediatric outpatient clinic for routine well-child visits. The statistical relationships between age and TDI values were analyzed. Also, the statistical relationships between body surface area (BSA) and TDI values, left ventricle end-diastolic dimension (LVEDD) and TDI values were analyzed. Also, we conducted multivariate analysis of cardiac growth parameters such as, age, BSA, LVEDD and TDI velocity data.

Results: All of the age, BSA, and LVEDD had positive correlations with deceleration time (DT), pressure half-time (PHT), peak early diastolic myocardial velocity, peak systolic myocardial velocity, and had negative correlations with peak late diastolic velocity (A) and the ratio of trans-mitral inflow velocity to early diastolic velocity of mitral annulus (E/E'). In the multivariate analysis, all of the age, BSA, and LVEDD had positive correlations with DT, PHT, and negative correlations with A and E/E'.

Conclusion: The cardiac growth parameters related alterations of E/E' may suggest that diastolic myocardial velocities are cardiac growth dependent, and diastolic function has positive correlation with cardiac growth in pediatric group. This cardiac growth related myocardial functional variation would be important for assessment of cardiac involvement either in healthy and sick child.

Keywords: Age; Children; Left ventricular diastolic function; Tissue Doppler imaging.