Radiation influence on the temperature-dependent parameters of fluids

Phys Rev E. 2016 Mar;93(3):032133. doi: 10.1103/PhysRevE.93.032133. Epub 2016 Mar 17.

Abstract

Based on the fundamental Bogolyubov chain of equations, a model relating the structural and thermophysical properties of the nonequilibrium liquid systems under irradiation in stationary state is introduced. The obtained results suggest that the thermophysical properties of the liquid systems under irradiation are defined by the "effective temperature" that can be calculated from the perturbed momentum distribution functions of the systems. It is shown that the structural changes in the liquid systems under irradiation are caused by the changes in the coefficients of the Maxwell distribution function due to the momentum exchange between the active particles and the particles forming the liquid. To confirm the theoretical predictions, a qualitative comparison of the model with the existing experimental data on irradiation influence on the surface tension coefficients of liquids is performed.