Seeking potent anti-tubercular agents: Design, synthesis, anti-tubercular activity and docking study of various ((triazoles/indole)-piperazin-1-yl/1,4-diazepan-1-yl)benzo[d]isoxazole derivatives

Bioorg Med Chem Lett. 2016 May 1;26(9):2245-50. doi: 10.1016/j.bmcl.2016.03.059. Epub 2016 Mar 15.

Abstract

A series of thirty eight novel 3-(4-((substituted-1H-1,2,3-triazol-4-yl)methyl)piperazin-1-yl/1,4-diazepan-1-yl)benzo[d]isoxazole and 1-(4-(benzo[d]isoxazol-3-yl)piperazin-1-yl/1,4-diazepan-1-yl)-2-(1H-indol-3-yl)substituted-1-one analogues were synthesised, characterised using various analytical techniques and evaluated for in vitro anti-tubercular activity against Mycobacterium tuberculosis H37Rv strain and two 'wild' strains Spec. 210 and Spec. 192. The titled compounds exhibited minimum inhibitory concentration (MIC) ranging from 6.16 to >200μM. Among the tested compounds, 7i, 7y and 7z exhibited moderate activity (MIC=24.03-29.19μM) and 7j exhibited very good anti-tubercular activity (MIC=6.16μM). Furthermore, 7i, 7j, 7y and 7z were found to be non-toxic against mouse macrophage cell lines when screened for toxicity. All the synthesised compounds were docked to pantothenate synthetase enzyme site to know deferent binding interactions with the receptor.

Keywords: Anti-tubercular agents; Benzo[d]isoxazole; Homopiperazine; Indole; Mycobacterium tuberculosis; Piperazine; Triazole.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antitubercular Agents / chemical synthesis*
  • Antitubercular Agents / pharmacology*
  • Drug Design
  • Isoxazoles / chemistry*
  • Isoxazoles / pharmacology*
  • Microbial Sensitivity Tests
  • Molecular Docking Simulation

Substances

  • Antitubercular Agents
  • Isoxazoles