[Internal Exposure Levels of PAHs of Primary School Students in Guangzhou]

Huan Jing Ke Xue. 2015 Dec;36(12):4567-73.
[Article in Chinese]

Abstract

In order to investigate the internal exposure levels of polycyclic aromatic hydrocarbons (PAHs) in primary school students of Guangzhou, the research collected urine of 78 and 86 primary school students from two primary schools in the summer of 2014, one school located in the ordinary residential area and the other in the industrial area. The contents of 10 kinds of OH-PAHs were tested by the rapid liquid chromatography coupled to triple quadruple tandem mass spectrometry. The results showed that the concentrations of total OH-PAHs in primary school students in the residential zone ranged from 0.83 µmol · mol⁻¹ to 80.63 µmol · mol⁻¹, while those in industrial area ranged from 1.06 µmol · mol⁻¹ to 72.47 µmol · mol⁻¹. The geometric average concentrations were 6.18 µmol · mol⁻¹ and 6.47 µmol · mol⁻¹, respectively, and there was no statistical significance between them (P > 0.05). Comparison of the exposure levels of different components of PAHs in the two areas found that all the OH-PAHs had no significant difference except for the levels of 1- OHP (P < 0.05). We should also pay attention to the higher exposure levels of PAHs in both areas when compared with other researches. In addition, the OH-PAHs in primary school students in the ordinary residential area had a good correlation between 0. 511 and 0.928 (P < 0.01), whereas there was no correlation between 1-OHP and 2-OHN, 1-OHN in the primary school students in the industrial area and other OH-PAHs had relatively weak correlation ranging from 0.338 to 0.855 (P < 0.01). This difference might indicate different pollution sources of PAHs in different functional areas, which was relatively single in the residential area, while the industrial area was polluted by multiple sources of industrial enterprises and logistics transportation emissions.

MeSH terms

  • Chromatography, Liquid
  • Environmental Exposure*
  • Environmental Pollution / analysis
  • Humans
  • Industry
  • Polycyclic Aromatic Hydrocarbons / analysis*
  • Schools
  • Students*
  • Tandem Mass Spectrometry

Substances

  • Polycyclic Aromatic Hydrocarbons