Complex-Mediated Synthesis of Tantalum Oxyfluoride Hierarchical Nanostructures for Highly Efficient Photocatalytic Hydrogen Evolution

ACS Appl Mater Interfaces. 2016 Apr 13;8(14):9395-404. doi: 10.1021/acsami.6b02622. Epub 2016 Apr 1.

Abstract

In this work, we have, for the first time, developed a facile wet-chemical route to obtain a novel photocatalytic material of tantalum oxyfluoride hierarchical nanostructures composed of amorphous cores and single crystalline TaO2F nanorod shells (ACHNs) by regulating the one-step hydrothermal process of TaF5 in a mixed solution of isopropanol (i-PrOH) and H2O. In this approach, elaborately controlling the reaction temperature and volume ratio of i-PrOH and H2O enabled TaF5 to transform into intermediate coordination complex ions of [TaOF3·2F](2-) and [TaF7](2-), which subsequently produced tantalum oxyfluoride ACHNs via a secondary nucleation and growth due to a stepwise change in hydrolysis rates of the two complex ions. Because of the unique chemical composition, crystal structure and micromorphology, the as-prepared tantalum oxyfluoride ACHNs show a more negative flat band potential, an accelerated charge transfer, and a remarkable surface area of 152.4 m(2) g(-1) contributing to increased surface reaction sites. As a result, they exhibit a photocatalytic activity for hydrogen production up to 1.95 mmol h(-1) g(-1) under the illumination of a simulated solar light without any assistance of co-catalysts, indicating that the as-prepared tantalum oxyfluoride ACHNs are a novel promising photocatalytic material for hydrogen production.

Keywords: complex-mediated synthesis; core−shell particles; hierarchical structure; photocatalytic hydrogen production; stepwise hydrolysis; tantalum oxyfluoride.

Publication types

  • Research Support, Non-U.S. Gov't