Wavelet transform analysis of skin perfusion during thermal stimulation

Clin Hemorheol Microcirc. 2016 Nov 25;64(2):167-175. doi: 10.3233/CH-162055.

Abstract

This work elucidates the mechanisms of skin microcirculation response to local heating at 44°C in vasculopathic patients. Laser Doppler and tcpO2 were simultaneously acquired. Patients were selected on the basis of tcpO2: Group A <30 mmHg; Group B 30-50 mmHg; Group C >50 mmHg. The wavelet analysis of signal oscillations displays six frequency intervals. Each interval is assigned to a specific cardiovascular activity. The contributions of cardiac, myogenic and neurogenic activities were selectively detected. Thermal stimulation increased relative amplitude in all patients: heart activity by +103.26% in A, +162.84% in B, +454.54% in C; myogenic activity by +52.45% in A, +38.51% in B, +156.19% in C; neurogenic activity +43.36% in A, +74.15% in B, +242.42% in C. Thermal stimulation increased relative power in all patients: heart activity by +365.30% in A, +473.72% in B, +1393.77% in C; myogenic activity by +106.92% in A, +66.03% in B, +380.18% in C; neurogenic activity by +77.00% in A, +162.65% in B, +771.93% in C.This work demonstrates that the spectral analysis allows extracting from Laser Doppler signals more information than that can be gained by solely investigating perfusion values over time.

Keywords: Microcirculation; local heating; wavelet transform.

MeSH terms

  • Aged
  • Female
  • Humans
  • Laser-Doppler Flowmetry / methods*
  • Male
  • Microcirculation / physiology*
  • Skin / blood supply*
  • Wavelet Analysis*