[Effects of conversion of natural broad-leaved forest to Chinese fir plantation on soil respiration in subtropical China]

Ying Yong Sheng Tai Xue Bao. 2015 Oct;26(10):2946-52.
[Article in Chinese]

Abstract

Soil CO2 effluxes in natural broad-leaved forest and the conversed Chinese fir plantation in Linglong Mountains Scenic of Zhejiang Province were evaluated by using static closed chamber and gas chromatography method. The results showed that soil CO2 efflux showed consistent seasonal dynamics in natural broad-leaved forest and Chinese fir plantation, with the maximums observed in summer and autumn, the minimums in winter and spring. Soil CO2 effluxes were 20.0-111.3 and 4.1-118.6 mg C . m-2 . h-1 in natural broad-leaved forest and Chinese fir plantation, respectively. The cumulative soil CO2 emission of natural broad-leaved forest (16.46 t CO2 . hm-2 . a-1) was significantly higher than that of Chinese fir plantation (11.99 t CO2 . hm-2 . a-1). Soil moisture did not affect soil CO2 efflux. There was a significant relationship between soil CO2 efflux and soil temperature at 5 cm depth. There was no significant relationship between soil CO2 efflux of natural broad-leaved forest and water soluble organic carbon content, while water soluble organic carbon content affected significantly soil CO2 efflux in Chinese fir plantation. Converting the natural broad-leaved forest to Chinese fir plantation reduced soil CO2 efflux significantly but improved the sensitivity of soil respiration to environmental factors.

MeSH terms

  • Carbon Dioxide / analysis
  • China
  • Cunninghamia*
  • Forests*
  • Seasons*
  • Soil / chemistry*
  • Temperature
  • Water

Substances

  • Soil
  • Water
  • Carbon Dioxide