Leptin Dysfunction and Alzheimer's Disease: Evidence from Cellular, Animal, and Human Studies

Cell Mol Neurobiol. 2016 Mar;36(2):203-17. doi: 10.1007/s10571-015-0282-7. Epub 2016 Mar 18.

Abstract

There is accumulating evidence from epidemiological studies that changes in body weight are associated with Alzheimer's disease (AD) from mid-life obesity increasing the risk of developing AD to weight loss occurring at the earliest stages of AD. Therefore, factors that regulate body weight are likely to influence the development and progression of AD. The adipocyte-derived hormone leptin has emerged as a major regulator of body weight mainly by activating hypothalamic neural circuits. Leptin also has several pleotropic effects including regulating cognitive function and having neuroprotective effects, suggesting a potential link between leptin and AD. Here, we will examine the relationship between leptin and AD by reviewing the recent evidence from cellular and animal models to human studies. We present a model where leptin has a bidirectional role in AD. Not only can alterations in leptin levels and function worsen cognitive decline and progression of AD pathology, but AD pathology, in of itself, can disrupt leptin signaling, which together would lead to a downward spiral of progressive neurodegeneration and worsening body weight and systemic metabolic deficits. Collectively, these studies serve as a framework to highlight the importance of understanding the molecular mechanisms underlying the body weight and systemic metabolic deficits in AD, which has the potential to open new avenues that may ultimately lead to novel therapeutic targets and diagnostic tools.

Keywords: Alzheimer’s disease; Amyloid; Body weight; Leptin; Metabolism; Tau.

Publication types

  • Review

MeSH terms

  • Alzheimer Disease / drug therapy
  • Alzheimer Disease / metabolism*
  • Alzheimer Disease / pathology
  • Animals
  • Body Weight
  • Disease Models, Animal
  • Humans
  • Leptin / metabolism*
  • Neuroprotective Agents / pharmacology
  • Neuroprotective Agents / therapeutic use
  • Translational Research, Biomedical

Substances

  • Leptin
  • Neuroprotective Agents