Bioelectrodes based on pseudocapacitive cellulose/polypyrrole composite improve performance of biofuel cell

Bioelectrochemistry. 2016 Dec:112:184-90. doi: 10.1016/j.bioelechem.2016.01.004. Epub 2016 Jan 27.

Abstract

Enzymatic electrodes with high internal capacitance, based on cellulose/polypyrrole composite were optimized and utilized to design improved enzymatic fuel cell. Fructose dehydrogenase Gluconobacter sp. specifically adsorbed on the cellulose/polypyrrole matrix and electrophoretically immobilized and electrochemically entrapped Laccase Trametes versicolor, were used as the anode and cathode bioelectrocatalysts, respectively. The cellulose/polypyrrole composite film exhibited pseudocapacitive properties under mild pH conditions. Following modification with carboxylic groups the composite material enabled highly efficient adsorption of enzyme and provided good electrical contact between the enzymatic active sites and the electrode surface. The modified cellulose/polypyrrole composite based electrode was used for the anode leading to mediatorless fructose oxidation giving large catalytic current density, 12.8mAcm(-2). Laccase and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as the mediator entrapped in the cellulose/polypyrrole composite film generated dioxygen reduction current density of 2mAcm(-2). Application of pseudocapacitive matrix and decreasing the distance between electrodes to 1mm lead to improvement of the biofuel cell power output and its regeneration ability. The power of the cell was found to increase by introduction of a preconditioning step during which the cell was kept at open circuit voltage under fuel flow. After 24h of preconditioning the matrix was recharged and the device output reached the power, 2.1mWcm(-2) and OCV, 0.59V.

Keywords: Biofuel cell; Fructose dehydrogenase; Laccase; Nanocellulose; Polypyrrole; Supercapacitor.

MeSH terms

  • Bioelectric Energy Sources*
  • Cellulose / chemistry*
  • Electric Capacitance*
  • Electrodes
  • Electrophoresis
  • Fructose / chemistry
  • Laccase / chemistry
  • Laccase / metabolism
  • Polymers / chemistry*
  • Pyrroles / chemistry*
  • Trametes / enzymology

Substances

  • Polymers
  • Pyrroles
  • Fructose
  • polypyrrole
  • Cellulose
  • Laccase