Phage Selection of Chemically Stabilized α-Helical Peptide Ligands

ACS Chem Biol. 2016 May 20;11(5):1422-7. doi: 10.1021/acschembio.5b00963. Epub 2016 Mar 11.

Abstract

Short α-helical peptides stabilized by linkages between constituent amino acids offer an attractive format for ligand development. In recent years, a range of excellent ligands based on stabilized α-helices were generated by rational design using α-helical peptides of natural proteins as templates. Herein, we developed a method to engineer chemically stabilized α-helical ligands in a combinatorial fashion. In brief, peptides containing cysteines in position i and i + 4 are genetically encoded by phage display, the cysteines are modified with chemical bridges to impose α-helical conformations, and binders are isolated by affinity selection. We applied the strategy to affinity mature an α-helical peptide binding β-catenin. We succeeded in developing ligands with Kd's as low as 5.2 nM, having >200-fold improved affinity. The strategy is generally applicable for affinity maturation of any α-helical peptide. Compared to hydrocarbon stapled peptides, the herein evolved thioether-bridged peptide ligands can be synthesized more easily, as no unnatural amino acids are required and the cyclization reaction is more efficient and yields no stereoisomers. A further advantage of the thioether-bridged peptide ligands is that they can be expressed recombinantly as fusion proteins.

Publication types

  • Research Support, Non-U.S. Gov't
  • Comment

MeSH terms

  • Amino Acid Sequence
  • Bacteriophages / metabolism*
  • Ligands*
  • Molecular Conformation
  • Molecular Sequence Data
  • Peptide Library
  • Peptides / chemistry
  • beta Catenin / metabolism

Substances

  • Ligands
  • Peptide Library
  • Peptides
  • beta Catenin