Morphological evolution of self-deposition Bi2Se3 nanosheets by oxygen plasma treatment

Sci Rep. 2016 Feb 29:6:22191. doi: 10.1038/srep22191.

Abstract

Bi2Se3 nanosheets were successfully synthesized by a microwave-assisted approach in the presence of polyvinylpyrroli done at a temperature of 180 °C for 2 h. The thin film was prepared on a silicon wafer via a self-deposition process in a Bi2Se3 nanosheet ink solution using the evaporation-induced self-assembly method. The structure and morphology of the obtained products were characterized by X-ray diffraction, scanning electron microscopy (SEM), x-ray photoelectron spectroscopy, and Raman spectroscopy. The highly uniform Bi2Se3 particles could be formed by controlling the oxygen plasma treatment time. After the plasma pretreatment from 10 to 20 s, the surface of Bi2Se3 film evolved from the worm-like structure to particles. The highly uniform thin film was formed on further increasing the plasma treatment time, which is consistent with the observed SEM results. Several important processes can result in the morphological evolution of Bi2Se3 nanosheets: (1) formation of Bi2Se3 oxide layer; (2) self-assembly of oxide nanoparticles under the action of high-energy oxygen plasma; and (3) electrostatic interaction and etching mechanism.

Publication types

  • Research Support, Non-U.S. Gov't