Exercise-related changes in between-network connectivity in overweight/obese adults

Physiol Behav. 2016 May 1:158:60-7. doi: 10.1016/j.physbeh.2016.02.031. Epub 2016 Feb 23.

Abstract

Understanding how exercise affects communication across the brain in overweight/obese individuals may provide insight into mechanisms of weight loss and maintenance. In the current study, we examined the effects of a 6-month exercise program in 11 overweight/obese individuals (mean BMI: 33.6±1.4mg/kg(2); mean age: 38.2±3.2years) on integrative brain "hubs," which are areas with high levels of connectivity to multiple large-scale networks thought to play an important role in multimodal integration among brain regions. These integrative hubs were identified with a recently developed between-network connectivity (BNC) metric, using functional magnetic resonance imaging (fMRI). BNC utilizes a multiple regression analysis approach to assess relationships between the time series of large-scale functionally-connected brain networks (identified using independent components analysis) and the time series of each individual voxel in the brain. This approach identifies brain regions with high between-network interaction, i.e., areas with high levels of connectivity to many large-scale networks. Changes in BNC following exercise were determined using paired t-tests, with results considered significant at a whole-brain level if they exceeded a voxel-wise threshold of p<0.01 and cluster-level family-wise error (FWE) correction for multiple comparisons of p<0.05. Following the intervention, BNC in the posterior cingulate cortex (PCC) was significantly reduced (p<0.001). The changes driving the observed effects were explored using Granger causality, finding significant reductions in both outgoing causal flow from the PCC to a number of networks (p<0.05; language network, visual network, sensorimotor network, left executive control network, basal ganglia network, posterior default mode network), in addition to reductions in ingoing causal flow to the PCC from a number of networks (p<0.05; ventral default mode network, language network, sensorimotor network, basal ganglia network). Change in BNC was related to changes in aerobic fitness level (VO2 max; p=0.008) and perceived hunger (Three Factor Eating Questionnaire; p=0.040). Overall, the impact of exercise on communication between large-scale networks may contribute to individual responsivity to exercise.

Keywords: Between-network connectivity; Default mode network; Exercise; Obesity; Posterior cingulate cortex; fMRI.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Absorptiometry, Photon
  • Adult
  • Basal Metabolism
  • Body Composition
  • Brain / diagnostic imaging
  • Brain / physiopathology*
  • Brain Mapping*
  • Exercise / physiology*
  • Female
  • Hormones / metabolism
  • Humans
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging
  • Male
  • Maximal Voluntary Ventilation
  • Obesity / diagnostic imaging
  • Obesity / physiopathology*
  • Overweight / diagnostic imaging
  • Overweight / physiopathology*
  • Oxygen / blood

Substances

  • Hormones
  • Oxygen