Connection of Jones and Mueller Tensors in Second Harmonic Generation and Multi-Photon Fluorescence Measurements

J Phys Chem B. 2016 Apr 7;120(13):3281-302. doi: 10.1021/acs.jpcb.5b11841. Epub 2016 Mar 29.

Abstract

Despite the rapidly growing use of second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) microscopy, opportunities for relating polarization-dependent measurements back to local structure and molecular orientation are often confounded by losses in polarization purity. In this work, connections linking Mueller tensor and Jones tensor descriptions of polarization-dependent SHG and TPEF are shown to substantially simplify partially depolarized microscopy measurements. These connections were facilitated by the derivation of several new tensor identity relations, based on generalization of established transformations of matrices and vectors. Methods are described for integrating local-frame symmetry and azimuthal rotation angle for simplifying the Mueller tensor. Through simple expressions bridging the Mueller and Jones formalisms, mathematical models for partial depolarization can greatly simplify interpretation of SHG and TPEF measurements to reconstruct the more general Mueller tensors using the much more concise Jones descriptions for the purely polarized components. Integrating the Mueller architecture allows polarization-dependent SHG and TPEF measurements to be connected back to a relatively small set of free parameters related to local structure and orientation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Fluorescence
  • Microscopy, Fluorescence, Multiphoton / methods*
  • Photons