Enhanced Gas Sensing Properties of SnO2 Hollow Spheres Decorated with CeO2 Nanoparticles Heterostructure Composite Materials

ACS Appl Mater Interfaces. 2016 Mar;8(10):6669-77. doi: 10.1021/acsami.6b00169. Epub 2016 Mar 2.

Abstract

CeO2 decorated SnO2 hollow spheres were successfully synthesized via a two-step hydrothermal strategy. The morphology and structures of as-obtained CeO2/SnO2 composites were analyzed by various kinds of techniques. The SnO2 hollow spheres with uniform size around 300 nm were self-assembled with SnO2 nanoparticles and were hollow with a diameter of about 100 nm. The CeO2 nanoparticles on the surface of SnO2 hollow spheres could be clearly observed. X-ray photoelectron spectroscopy results confirmed the existence of Ce(3+) and the increased amount of both chemisorbed oxygen and oxygen vacancy after the CeO2 decorated. Compared with pure SnO2 hollow spheres, such composites revealed excellent enhanced sensing properties to ethanol. When the ethanol concentration was 100 ppm, the sensitivity of the CeO2/SnO2 composites was 37, which was 2.65-times higher than that of the primary SnO2 hollow spheres. The sensing mechanism of the enhanced gas sensing properties was also discussed.

Keywords: CeO2/SnO2 composites; gas sensor; heterostructure; hollow spheres; sensing mechanism.

Publication types

  • Research Support, Non-U.S. Gov't