Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared

Opt Lett. 2016 Feb 1;41(3):610-3. doi: 10.1364/OL.41.000610.

Abstract

We present Vernier-effect photonic microcavities based on a germanium-on-silicon technology platform, operating around the mid-infrared wavelength of 3.8 μm. Cascaded racetrack resonators have been designed to operate in the second regime of the Vernier effect, and typical Vernier comb-like spectra have been successfully demonstrated with insertion losses of ∼5 dB, maximum extinction ratios of ∼23 dB, and loaded quality factors higher than 5000. Furthermore, an add-drop racetrack resonator designed for a Vernier device has been characterized, exhibiting average insertion losses of 1 dB, extinction ratios of up to 18 dB, and a quality factor of ∼1700.