Temperature Mediated Morphological Transition during Drying of Spray Colloidal Droplets

Langmuir. 2016 Mar 15;32(10):2464-73. doi: 10.1021/acs.langmuir.5b04171. Epub 2016 Mar 2.

Abstract

Understanding how a tiny dilute evaporative colloidal spray droplet gets transformed into a microgranule with a characteristic morphology is crucial from scientific as well as technological points of view. In the present work, it is demonstrated that the morphology and the size distribution of the microcapsules can be tuned simply by adjusting the drying temperature. Shape and size of the capsules are quantified at four different drying temperatures. It is shown that the morphology transits gradually from sphere to toroid with increasing temperature keeping the average volume-fraction of the correlated nanoparticles nearly unaffected for the synthesized granules. A plausible mechanism for the chronological pathway of such morphological transformation is illustrated. Computer simulation corroborates the experimentally observed morphological transition. The variation in hollowness and buckling tendency of the capsules are elucidated by scattering and imaging techniques.