Electric Field Control of Jahn-Teller Distortions in Bulk Perovskites

Phys Rev Lett. 2016 Feb 5;116(5):057602. doi: 10.1103/PhysRevLett.116.057602. Epub 2016 Feb 1.

Abstract

The Jahn-Teller distortion, by its very nature, is often at the heart of the various electronic properties displayed by perovskites and related materials. Despite the Jahn-Teller mode being nonpolar, we devise and demonstrate, in the present Letter, an electric field control of Jahn-Teller distortions in bulk perovskites. The electric field control is enabled through an anharmonic lattice mode coupling between the Jahn-Teller distortion and a polar mode. We confirm this coupling and quantify it through first-principles calculations. The coupling will always exist within the Pb2_{1}m space group, which is found to be the favored ground state for various perovskites under sufficient tensile epitaxial strain. Intriguingly, the calculations reveal that this mechanism is not only restricted to Jahn-Teller active systems, promising a general route to tune or induce novel electronic functionality in perovskites as a whole.