Testing the effects of perimeter fencing and elephant exclosures on lion predation patterns in a Kenyan wildlife conservancy

PeerJ. 2016 Feb 11:4:e1681. doi: 10.7717/peerj.1681. eCollection 2016.

Abstract

The use of fences to segregate wildlife can change predator and prey behaviour. Predators can learn to incorporate fencing into their hunting strategies and prey can learn to avoid foraging near fences. A twelve-strand electric predator-proof fence surrounds our study site. There are also porous one-strand electric fences used to create exclosures where elephant (and giraffe) cannot enter in order to protect blocs of browse vegetation for two critically endangered species, the black rhinoceros (Diceros bicornis) and the Grevy's zebra (Equus grevyi). The denser vegetation in these exclosures attracts both browsing prey and ambush predators. In this study we examined if lion predation patterns differed near the perimeter fencing and inside the elephant exclosures by mapping the location of kills. We used a spatial analysis to compare the predation patterns near the perimeter fencing and inside the exclosures to predation in the rest of the conservancy. Predation was not over-represented near the perimeter fence but the pattern of predation near the fence suggests that fences may be a contributing factor to predation success. Overall, we found that predation was over-represented inside and within 50 m of the exclosures. However, by examining individual exclosures in greater detail using a hot spot analysis, we found that only a few exclosures contained lion predation hot spots. Although some exclosures provide good hunting grounds for lions, we concluded that exclosures did not necessarily create prey-traps per se and that managers could continue to use this type of exclusionary fencing to protect stands of dense vegetation.

Keywords: Black rhino; Elephant; Exclosure; Fencing; Giraffe; Hot spot; Lion; Predation; Vegetation; Wildlife management.

Grants and funding

The authors received no funding for this work.