High-internal-phase emulsions stabilized by metal-organic frameworks and derivation of ultralight metal-organic aerogels

Sci Rep. 2016 Feb 19:6:21401. doi: 10.1038/srep21401.

Abstract

To design high-internal-phase emulsion (HIPE) systems is of great interest from the viewpoints of both fundamental researches and practical applications. Here we demonstrate for the first time the utilization of metal-organic framework (MOF) for HIPE formation. By stirring the mixture of water, oil and MOF at room temperature, the HIPE stabilized by the assembly of MOF nanocrystals at oil-water interface could be formed. The MOF-stabilized HIPE provides a novel route to produce highly porous metal-organic aerogel (MOA) monolith. After removing the liquids from the MOF-stabilized HIPE, the ultralight MOA with density as low as 0.01 g·cm(-3) was obtained. The HIPE approach for MOA formation has unique advantages and is versatile in producing different kinds of ultralight MOAs with tunable porosities and structures.

Publication types

  • Research Support, Non-U.S. Gov't