Asymtomatic Bacteriuria as a Model to Study the Coevolution of Hosts and Bacteria

Pathogens. 2016 Feb 15;5(1):21. doi: 10.3390/pathogens5010021.

Abstract

During asymptomatic bacteriuria (ABU), bacteria colonize the urinary tract for extended periods of time without causing symptoms of urinary tract infection. Previous studies indicate that many Escherichia coli (E. coli) strains that cause ABU have evolved from uropathogenic E. coli (UPEC) by reductive evolution and loss of the ability to express functional virulence factors. For instance, the prototype ABU strain 83972 has a smaller genome than UPEC strains with deletions or point mutations in several virulence genes. To understand the mechanisms of bacterial adaptation and to find out whether the bacteria adapt in a host-specific manner, we compared the complete genome sequences of consecutive reisolates of ABU strain 83972 from different inoculated individuals and compared them with the genome of the parent strain. Reisolates from different hosts exhibited individual patterns of genomic alterations. Non-synonymous SNPs predominantly occurred in coding regions and often affected the amino acid sequence of proteins with global or pleiotropic regulatory function. These gene products are involved in different bacterial stress protection strategies, and metabolic and signaling pathways. Our data indicate that adaptation of E. coli 83972 to prolonged growth in the urinary tract involves responses to specific growth conditions and stresses present in the individual hosts. Accordingly, modulation of gene expression required for survival and growth under stress conditions seems to be most critical for long-term growth of E. coli 83972 in the urinary tract.

Keywords: E. coli adaptation; asymptomatic bacteriuria (ABU); evolution.

Publication types

  • Review