Aurophilicity in Action: Fine-Tuning the Gold(I)-Gold(I) Distance in the Excited State To Modulate the Emission in a Series of Dinuclear Homoleptic Gold(I)-NHC Complexes

Inorg Chem. 2016 May 16;55(10):4720-32. doi: 10.1021/acs.inorgchem.5b02722. Epub 2016 Feb 16.

Abstract

The solution-state emission profiles of a series of dinuclear Au(I) complexes 4-6 of the general formula Au2(NHC-(CH2)n-NHC)2Br2, where NHC = N-benzylbenzimidazol-2-ylidene and n = 1-3, were found to be markedly different from each other and dependent on the presence of excess bromide. The addition of excess bromide to the solutions of 4 and 6 leads to red shifts of ca. 60 nm, and in the case of 5, which is nonemissive when neat, green luminescence emerges. A detailed computational study undertaken to rationalize the observed behavior revealed the determining role aurophilicity plays in the photophysics of these compounds, and the formation of exciplexes between the complex cations and solvent molecules or counterions was demonstrated to significantly decrease the Au-Au distance in the triplet excited state. A direct dependence of the emission wavelength on the strength of the intracationic aurophilic contact allows for a controlled manipulation of the emission energy by varying the linker length of a diNHC ligand and by judicial choice of counterions or solvent. Such unique stimuli-responsive solution-state behavior is of interest to prospective applications in medical diagnostics, bioimaging, and sensing. In the solid, the investigated complexes are intensely phosphorescent and, notably, 5 and 6 exhibit reversible luminescent mechanochromism arising from amorphization accompanied by the loss of co-crystallized methanol molecules. The mechano-responsive properties are also likely to be related to changes in bromide coordination and the ensuing alterations of intramolecular aurophilic interactions. Somewhat surprisingly, the photophysics of NHC ligand precursors 2 and 3 is related to the formation of ground-state associates with bromide counterions through hydrogen bonding, whereas 1 does not appear to bind its counterions.