Synthesis, characterization and Cu(2+) triggered selective fluorescence quenching of Bis-calix[4]arene tetra-triazole macrocycle

J Hazard Mater. 2016 May 15:309:97-106. doi: 10.1016/j.jhazmat.2016.01.074. Epub 2016 Feb 4.

Abstract

A novel fluorescent bis-calix[4]arene macrocycle 9 incorporating metal-binding pockets was successfully prepared. The structure of macrocycle 9 and its precursors were characterized via EI-MS, MALDI-TOF-MS, ESI-MS, (1)H NMR, (13)CNMR, 2D NMR, and X-ray crystallography. The macrocycle 9 displayed selective fluorescence quenching after interacting with Cu(2+) in the presence competing metal cations including Mg(2+), Ca(2+), Ba(2+), Ag(+), Zn(2+), Ti(4+),Cd(2+), Hg(2+), Pb(2+), In(3+), La(3+), Cr(3+), Ni(2+), Sb(3+), V(5+), Fe(3+), Co(2+), Sn(2+), Sn(2+), and Tl(+). The Cu(2+) limit of detection was found to be 40 nM much lower than its threshold level (∼ 20 μM) in drinking water permitted by the U.S Environmental Protection Agency (EPA). Furthermore, drinking water samples from Karachi University (Pakistan) spiked with Cu(2+) were analysed with the sensing system and the results showed an excellent agreement with the fluorescence quenching phenomenon of macrocycle 9 examined in deionized water. Importantly, the chemosensor 9 could be used to detect Cu(2+) in living cells.

Keywords: Atomic force microscopy; Bis-calix[4]arene; Fluorescence; Macrocycle; Supramolecular.

Publication types

  • Research Support, Non-U.S. Gov't