Oxidative addition of an aromatic ortho C-H bond of tetraphosphine to asymmetric diiridium(i) centres

Dalton Trans. 2016 Mar 21;45(11):4747-61. doi: 10.1039/c5dt04725k. Epub 2016 Feb 10.

Abstract

Reactions of a tetraphosphine, meso-bis{[(diphenylphosphinomethyl)phenyl]phosphino}propane (dpmppp), with [IrCl(cod)]2 and CO (1 atm) or isocyanide (RNC) in the presence of NH4PF6 at 80-100 °C in dichloromethane/acetonitrile/acetone and/or methanol mixed solvents afforded asymmetric diiridium(ii) complexes, [Ir2(H)(Cl)(μ-(dpmppp-H)-κP(4)C)(CO)3]PF6 (1) and [Ir2(H)(μ-(dpmppp-H)-κP(4)C)(RNC)4)]-(PF6)2 (R = 2,6-xylyl (2), 2,4,6-mesityl (3); dpmppp-H = {PPh(o-C6H4)CH2P(Ph)(CH2)3P(Ph)CH2PPh2}(-)). A similar reaction with (t)BuNC resulted in the formation of a mononuclear Ir(III) complex of [Ir(H)(dpmppp-κP(3))((t)BuNC)2](PF6)2 (4). Complexes 1-3 were characterized by ESI mass spectrometry, (1)H and (31)P NMR spectroscopy and X-ray diffraction analyses. They were found to consist of cis/trans-P,P asymmetric Ir(II)-Ir(II) bonded dinuclear structures derived from oxidative addition of an ortho C-H bond of dpmppp (Ir-Ir = 2.8044(2) Å (1), 2.8569(2) Å (2), and 2.8524(5) Å (3)), resulting in a [IrPCCIr] intermetallic cyclometal-bridge and a terminal hydride. DFT calculations indicated the presence of Ir-Ir, Ir-H, and Ir-Cortho covalent bonds. Initial stages of the reactions with CO and XylNC at room temperature were investigated by (31)P{(1)H} NMR spectroscopy and found to contain a symmetrical Ir(I) dinuclear unit with dpmppp that was readily transformed into 1 and 2 upon heating. The Ir intermediate with XylNC, [Ir2(XylNC)4(μ-dpmppp)](PF6)2 (6), was isolated and characterized by X-ray crystallography and DFT calculations as an electron-deficient 32e(-) Ir species involving a Ir(I)→Ir(I) dative bond (2.7989(5) Å). The reaction pathways from 6 to 2 were investigated by DFT calculations. The present study suggested that a novel oxidative addition of an ortho C-H bond proceeded on the cis/trans-P,P asymmetric diiridium(i) scaffold supported by the tetraphosphine, dpmppp, which was assumed to be facilitated by dimetal cooperation with switching Ir→Ir dative interactions.

Publication types

  • Research Support, Non-U.S. Gov't