Oxidation of heat shock protein 60 and protein disulfide isomerase activates ERK and migration of human hepatocellular carcinoma HepG2

Oncotarget. 2016 Mar 8;7(10):11067-82. doi: 10.18632/oncotarget.7093.

Abstract

Hepatocyte growth factor (HGF) and its receptor c-Met were frequently deregulated in hepatocellular carcinoma (HCC). Signaling pathways activated by HGF-c-Met are promising targets for preventing HCC progression. HGF can induce the reactive oxygen species (ROS) signaling for cell adhesion, migration and invasion of tumors including HCC. On the other hand, extracellular signal-regulated kinases (ERK), member of mitogen activated kinase, can be activated by ROS for a lot of cellular processes. As expected, HGF-induced phosphorylation of ERK and progression of HCC cell HepG2 were suppressed by ROS scavengers. By N-(biotinoyl)-N'-(iodoacetyl)-ethylenediamine (BIAM) labeling method, a lot of cysteine (-SH)-containing proteins with M.W. 50-75 kD were decreased in HepG2 treated with HGF or two other ROS generators, 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and phenazine methosulfate. These redox sensitive proteins were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Among them, two chaperones, heat shock protein 60 (HSP60) and protein disulfide isomerase (PDI), were found to be the most common redox sensitive proteins in responding to all three agonists. Affinity blot of BIAM-labeled, immunoprecipitated HSP60 and PDI verified that HGF can decrease the cysteine (-SH) containing HSP60 and PDI. On the other hand, HGF and TPA increased cysteinyl glutathione-containing HSP60, consistent with the decrease of cysteine (-SH)-containing HSP60. Moreover, depletion of HSP60 and PDI or expression of dominant negative mutant of HSP60 with alteration of Cys, effectively prevented HGF-induced ERK phosphorylation and HepG2 migration.In conclusion, the redox sensitive HSP60 and PDI are required for HGF-induced ROS signaling and potential targets for preventing HCC progressions.

Keywords: extracellular signal-regulated kinases; heat shock protein 60; hepatocellular carcinoma; hepatocyte growth factor; reactive oxygen species.

MeSH terms

  • Animals
  • Carcinoma, Hepatocellular / metabolism
  • Carcinoma, Hepatocellular / pathology*
  • Cell Movement / physiology*
  • Chaperonin 60 / metabolism*
  • Enzyme Activation / physiology
  • Extracellular Signal-Regulated MAP Kinases / metabolism*
  • Hep G2 Cells
  • Hepatocyte Growth Factor / metabolism
  • Heterografts
  • Humans
  • Liver Neoplasms / metabolism
  • Liver Neoplasms / pathology*
  • Mice
  • Mice, SCID
  • Mitochondrial Proteins / metabolism*
  • Oxidation-Reduction
  • Protein Disulfide-Isomerases / metabolism*
  • Reactive Oxygen Species / metabolism

Substances

  • Chaperonin 60
  • HGF protein, human
  • HSPD1 protein, human
  • Mitochondrial Proteins
  • Reactive Oxygen Species
  • Hepatocyte Growth Factor
  • Extracellular Signal-Regulated MAP Kinases
  • Protein Disulfide-Isomerases