Sensitive methanol sensor based on PMMA-G-CNTs nanocomposites deposited onto glassy carbon electrodes

Talanta. 2016 Apr 1:150:71-80. doi: 10.1016/j.talanta.2015.12.012. Epub 2015 Dec 11.

Abstract

A new series of polymethyl methacrylate-graphene-carbon nanotubes crossbred nanocomposites in the form of PMMA-G-CNTs has been synthesized using simple dissolution procedure in organic media. The desired nanocomposites have been prepared using different loading (2 ∼ 30%) from consequently mixed GNPs/CNTs ratio and confirmed by various characterization techniques utilized to corroborate the assembly of these new hybrid series including X-ray diffraction analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. The PMMA-G-CNTs nanocomposites were deposited on flat glassy carbon electrodes (GCE) to result in a sensor that has a fast response toward methanol in the phosphate buffer phase. Features including high sensitivity, low-sample volume, reliability, reproducibility, ease of integration, long-term stability, and enhanced electrochemical responses are investigated. The calibration plot is linear (r(2)=0.9895) over the 1.0 nmol L(-1) to 10.0 mmol L(-1) methanol concentration ranges. The sensitivity and detection limit is 13.491 µA cm(-2) mmol L(-2) and 0.39 ± 0.1 nmol L(-1) (at a signal-to-noise-ratio, SNR of 3), respectively. With such excellent features of analytical parameters, the developed sensor provides a new strategy for determination of methanol in biomedical and environmental analytes with satisfactory results.

Keywords: I–V method; Methanol; Polymethyl methacrylate; glassy carbon electrode; hybrid graphene/carbon nanotubes nanocomposites; sensitivity.