Fibroblastic reticular cell-derived lysophosphatidic acid regulates confined intranodal T-cell motility

Elife. 2016 Feb 2:5:e10561. doi: 10.7554/eLife.10561.

Abstract

Lymph nodes (LNs) are highly confined environments with a cell-dense three-dimensional meshwork, in which lymphocyte migration is regulated by intracellular contractile proteins. However, the molecular cues directing intranodal cell migration remain poorly characterized. Here we demonstrate that lysophosphatidic acid (LPA) produced by LN fibroblastic reticular cells (FRCs) acts locally to LPA2 to induce T-cell motility. In vivo, either specific ablation of LPA-producing ectoenzyme autotaxin in FRCs or LPA2 deficiency in T cells markedly decreased intranodal T cell motility, and FRC-derived LPA critically affected the LPA2-dependent T-cell motility. In vitro, LPA activated the small GTPase RhoA in T cells and limited T-cell adhesion to the underlying substrate via LPA2. The LPA-LPA2 axis also enhanced T-cell migration through narrow pores in a three-dimensional environment, in a ROCK-myosin II-dependent manner. These results strongly suggest that FRC-derived LPA serves as a cell-extrinsic factor that optimizes T-cell movement through the densely packed LN reticular network.

Keywords: Fibroblastic reticular cell; Lymph node; Lymphocyte migration; Lysophospholipid; cell biology; immunology; mouse.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Movement*
  • Fibroblasts / metabolism*
  • Lysophospholipids / metabolism*
  • Mice, Inbred C57BL
  • Molecular Sequence Data
  • Sequence Analysis, DNA
  • T-Lymphocytes / drug effects*
  • T-Lymphocytes / physiology*
  • rhoA GTP-Binding Protein / metabolism

Substances

  • Lysophospholipids
  • rhoA GTP-Binding Protein
  • lysophosphatidic acid

Grants and funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.