Enzymes as Green Catalysts for Precision Macromolecular Synthesis

Chem Rev. 2016 Feb 24;116(4):2307-413. doi: 10.1021/acs.chemrev.5b00472. Epub 2016 Jan 21.

Abstract

The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Biocatalysis*
  • Green Chemistry Technology
  • Hydrolases / chemistry
  • Hydrolases / metabolism*
  • Macromolecular Substances / chemistry
  • Macromolecular Substances / metabolism*
  • Models, Molecular
  • Oxidoreductases / chemistry
  • Oxidoreductases / metabolism*
  • Transferases / chemistry
  • Transferases / metabolism*

Substances

  • Macromolecular Substances
  • Oxidoreductases
  • Transferases
  • Hydrolases