Mitochondrial resetting and metabolic reprogramming in induced pluripotent stem cells and mitochondrial disease modeling

Biochim Biophys Acta. 2016 Apr;1860(4):686-93. doi: 10.1016/j.bbagen.2016.01.009. Epub 2016 Jan 15.

Abstract

Background: Nuclear reprogramming with pluripotency factors enables somatic cells to gain the properties of embryonic stem cells. Mitochondrial resetting and metabolic reprogramming are suggested to be key early events in the induction of human skin fibroblasts to induced pluripotent stem cells (iPSCs).

Scope of review: We review recent advances in the study of the molecular basis for mitochondrial resetting and metabolic reprogramming in the regulation of the formation of iPSCs. In particular, the recent progress in using iPSCs for mitochondrial disease modeling was discussed.

Major conclusions: iPSCs rely on glycolysis rather than oxidative phosphorylation as a major supply of energy. Mitochondrial resetting and metabolic reprogramming thus play crucial roles in the process of generation of iPSCs from somatic cells.

General significance: Neurons, myocytes, and cardiomyocytes are cells containing abundant mitochondria in the human body, which can be differentiated from iPSCs or trans-differentiated from fibroblasts. Generating these cells from iPSCs derived from skin fibroblasts of patients with mitochondrial diseases or by trans-differentiation with cell-specific transcription factors will provide valuable insights into the role of mitochondrial DNA heteroplasmy in mitochondrial disease modeling and serves as a novel platform for screening of drugs to treat patients with mitochondrial diseases.

Keywords: Glycolysis; Induced pluripotent stem cells; Metabolic reprogramming; Mitochondrial disease.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cellular Reprogramming*
  • Humans
  • Induced Pluripotent Stem Cells / metabolism*
  • Induced Pluripotent Stem Cells / pathology
  • Mitochondria / genetics
  • Mitochondria / metabolism*
  • Mitochondria / pathology
  • Mitochondrial Diseases / genetics
  • Mitochondrial Diseases / metabolism*
  • Mitochondrial Diseases / pathology
  • Models, Biological*