Effects of ultrasonic vibrations in micro-groove turning

Ultrasonics. 2016 Apr:67:30-40. doi: 10.1016/j.ultras.2015.12.016. Epub 2016 Jan 7.

Abstract

Ultrasonic vibration cutting is an efficient cutting process for mechanical micro-machining. This process can generate intricate surface textures with different geometric characteristics. Micro-grooves/micro-channels are among the most frequently encountered micro-structures and, as such, are the focus of this paper. The effectiveness of both the linear and ultrasonic elliptical vibration-assisted machining technique in micro-groove turning is analyzed and discussed in the paper. The paper first investigates the mechanisms of micro-groove generation induced by the linear and elliptical vibration modes. A simplified cutting force analysis method is given to compare the effectiveness of the two modes in micro-groove turning. The surface roughness of the generated micro-grooves is analyzed next and theoretical expressions are given for the two cases. Finally, micro-groove turning experiments are conducted to compare the influences of the two vibration modes on the cutting forces and the surface roughness. The experimental results show that linear vibration-assisted micro-groove turning leads to better surface roughness as compared to the elliptical vibration-assisted case, while elliptical vibration-assisted micro-groove turning shows advantages in terms of decreasing the cutting forces.

Keywords: Cutting forces; Micro-groove; Surface roughness; Turning process; Ultrasonic vibration cutting.